1,145 research outputs found

    Optimizing adipogenic transdifferentiation of bovine mesenchymal stem cells: a prominent role of ascorbic acid in FABP4 induction

    Get PDF
    Adipocyte differentiation of bovine adipose-derived stem cells (ASC) was induced by foetal bovine serum (FBS), biotin, pantothenic acid, insulin, rosiglitazone, dexamethasone and 3-isobutyl-1-methylxanthine, followed by incubation in different media to test the influence of ascorbic acid (AsA), bovine serum lipids (BSL), FBS, glucose and acetic acid on transdifferentiation into functional adipocytes. Moreover, different culture plate coatings (collagen-A, gelatin-A or poly-L-lysine) were tested. The differentiated ASC were subjected to Nile red staining, DAPI staining, immunocytochemistry and quantitative reverse transcription PCR (for NT5E, THY1, ENG, PDGFRα, FABP4, PPARγ, LPL, FAS, GLUT4). Nile red quantification showed a significant increase in the development of lipid droplets in treatments with AsA and BSL without FBS. The presence of BSL induced a prominent increase in FABP4 mRNA abundance and in FABP4 immunofluorescence signals in coincubation with AsA. The abundance of NT5E, ENG and THY1 mRNA decreased or tended to decrease in the absence of FBS, and ENG was additionally suppressed by AsA. DAPI fluorescence was higher in cells cultured in poly-L-lysine or gelatin-A coated wells. In additional experiments, the multi-lineage differentiation potential to osteoblasts was verified in medium containing ß-glycerophosphate, dexamethasone and 1,25-dihydroxyvitamin D3 using alizarin red staining. In conclusion, bovine ASC are capable of multi-lineage differentiation. Poly-L-lysine or gelatin-A coating, the absence of FBS, and the presence of BSL and AsA favour optimal transdifferentiation into adipocytes. AsA supports transdifferentiation via a unique role in FABP4 induction, but this is not linearly related to the primarily BSL-driven lipid accumulation

    Universal Robotic Gripper based on the Jamming of Granular Material

    Full text link
    Gripping and holding of objects are key tasks for robotic manipulators. The development of universal grippers able to pick up unfamiliar objects of widely varying shape and surface properties remains, however, challenging. Most current designs are based on the multi-fingered hand, but this approach introduces hardware and software complexities. These include large numbers of controllable joints, the need for force sensing if objects are to be handled securely without crushing them, and the computational overhead to decide how much stress each finger should apply and where. Here we demonstrate a completely different approach to a universal gripper. Individual fingers are replaced by a single mass of granular material that, when pressed onto a target object, flows around it and conforms to its shape. Upon application of a vacuum the granular material contracts and hardens quickly to pinch and hold the object without requiring sensory feedback. We find that volume changes of less than 0.5% suffice to grip objects reliably and hold them with forces exceeding many times their weight. We show that the operating principle is the ability of granular materials to transition between an unjammed, deformable state and a jammed state with solid-like rigidity. We delineate three separate mechanisms, friction, suction and interlocking, that contribute to the gripping force. Using a simple model we relate each of them to the mechanical strength of the jammed state. This opens up new possibilities for the design of simple, yet highly adaptive systems that excel at fast gripping of complex objects.Comment: 10 pages, 7 figure

    The quasi-optical analysis of Bessel beams in the far infrared

    Get PDF
    We discuss the Gaussian beam mode analysis of Bessel beams, eigen-solutions of the wave-equation in cylindrical polar coordinates which neither change form nor spread out as they propagate. Approximate, limited diffraction finite aperture, pseudo-Bessel beams having intense on-axis spots with large depths of field can be produced experimentally in the far infrared by using plastic conical lenses, known as axicons. We illustrate the physical insight provided by Gaussian beam mode analysis of such systems. Such pseudo-Bessel beams can be usefully approximated by high-order Gaussian–Laguerre modes, which have similar propagation characteristics. The size of the on-axis spot produced by an axicon, and its depth of focus, can be estimated from a single best-fit high-order Gaussian–Laguerre mode, and a more detailed description of behaviour can be achieved by adding a few additional modes of neighbouring orders. The strength of Gaussian beam mode analysis is that it is straightforward to model the propagation of Bessel beams through complex systems of long wavelength optical components, such as apertures, mirrors, and lenses. We report the experimental generation and measurement of a 0.1 THz Bessel beam, and show that useful performance is possible for an axicon having a scale size just one order of magnitude greater than the wavelength. This work confirms the technical feasibility of designing and building long-wavelength optical systems based on Bessel beams

    Resolving long-range spatial correlations in jammed colloidal systems using photon correlation imaging

    Get PDF
    We introduce a new dynamic light scattering method, termed photon correlation imaging, which enables us to resolve the dynamics of soft matter in space and time. We demonstrate photon correlation imaging by investigating the slow dynamics of a quasi two-dimensional coarsening foam made of highly packed, deformable bubbles and a rigid gel network formed by dilute, attractive colloidal particles. We find the dynamics of both systems to be determined by intermittent rearrangement events. For the foam, the rearrangements extend over a few bubbles, but a small dynamical correlation is observed up to macroscopic length scales. For the gel, dynamical correlations extend up to the system size. These results indicate that dynamical correlations can be extremely long-ranged in jammed systems and point to the key role of mechanical properties in determining their nature.Comment: Published version (Phys. Rev. Lett. 102, 085702 (2009)) The Dynamical Activity Mapsprovided as Supplementary Online Material are also available on http://w3.lcvn.univ-montp2.fr/~lucacip/dam/movies.ht

    Modeling mycorrhizal fungi dispersal by the mycophagous swamp wallaby (Wallabia bicolor)

    Get PDF
    Despite the importance of mammal-fungal interactions, tools to estimate the mammal-assisted dispersal distances of fungi are lacking. Many mammals actively consume fungal fruiting bodies, the spores of which remain viable after passage through their digestive tract. Many of these fungi form symbiotic relationships with trees and provide an array of other key ecosystem functions. We present a flexible, general model to predict the distance a mycophagous mammal would disperse fungal spores. We modelled the probability of spore dispersal by combining animal movement data from GPS-telemetry with data on spore gut-retention time. We test this model using an exemplar generalist mycophagist, the swamp wallaby (Wallabia bicolor). We show that swamp wallabies disperse fungal spores hundreds of metres—and occasionally up to 1265 m—from the point of consumption, distances that are ecologically significant for many mycorrhizal fungi. In addition to highlighting the ecological importance of swamp wallabies as dispersers of mycorrhizal fungi in eastern Australia, our simple modelling approach provides a novel and effective way of empirically describing spore dispersal by a mycophagous animal. This approach is applicable to the study of other animal-fungi interactions in other ecosystems.Funding provided by: Hermon Slade FoundationCrossref Funder Registry ID: http://dx.doi.org/10.13039/501100001109Award Number: HSF08-6Funding provided by: Australian Research CouncilCrossref Funder Registry ID: http://dx.doi.org/10.13039/501100000923Award Number: DP0557022Methods are described in the published article

    Quasi-optical multiplexing using reflection phase gratings

    Get PDF
    Heterodyne array receiver systems for both ground based and satellite telescope facilities are now becoming feasible for imaging in the submillimetre/terahertz regions of the EM spectrum. Phase gratings can be usefully employed as high efficiency passive multiplexing devices in the local oscillator (LO) injection chain of such receivers, ensuring that each element of the array is adequately biased and that the reflected LO power level at the array is minimised. For the wavelengths of interest both transmission and reflection gratings can be manufactured by milling an appropriate pattern of slots into the surface(s) of a suitable material. Thus, the required phase modulation is produced by the resulting pattern of varying optical path lengths suffered by the incident wave-front. We report on work we are undertaking to develop all reflection quasi-optical multiplexing systems so as to reduce reflection losses at the grating and minimise the number of surfaces that can contribute to standing wave effects in the optical system. As part of this endeavour we have also developed a quasi-optical technique for analysing the inevitable degradation due to multiple reflections on transmission grating design. This analysis is based on the Gaussian beam mode technique, and a further application of this technique allows one to assess tolerance limitations on the grating

    Quasi-optical multiplexing using reflection phase gratings

    Get PDF
    Heterodyne array receiver systems for both ground based and satellite telescope facilities are now becoming feasible for imaging in the submillimetre/terahertz regions of the EM spectrum. Phase gratings can be usefully employed as high efficiency passive multiplexing devices in the local oscillator (LO) injection chain of such receivers, ensuring that each element of the array is adequately biased and that the reflected LO power level at the array is minimised. For the wavelengths of interest both transmission and reflection gratings can be manufactured by milling an appropriate pattern of slots into the surface(s) of a suitable material. Thus, the required phase modulation is produced by the resulting pattern of varying optical path lengths suffered by the incident wave-front. We report on work we are undertaking to develop all reflection quasi-optical multiplexing systems so as to reduce reflection losses at the grating and minimise the number of surfaces that can contribute to standing wave effects in the optical system. As part of this endeavour we have also developed a quasi-optical technique for analysing the inevitable degradation due to multiple reflections on transmission grating design. This analysis is based on the Gaussian beam mode technique, and a further application of this technique allows one to assess tolerance limitations on the grating

    Shearing a Glassy Material: Numerical Tests of Nonequilibrium Mode-Coupling Approaches and Experimental Proposals

    Full text link
    The predictions of a nonequilibrium schematic mode-coupling theory developed to describe the nonlinear rheology of soft glassy materials have been numerically challenged in a sheared binary Lennard-Jones mixture. The theory gives an excellent description of the stress/temperature `jamming phase diagram' of the system. In the present paper, we focus on the issue of an effective temperature Teff for the slow modes of the fluid, as defined from a generalized fluctuation-dissipation theorem. As predicted theoretically, many different observables are found to lead to the same value of Teff, suggesting several experimental procedures to measure Teff. New, simple experimental protocols to access Teff from a generalized equipartition theorem are also proposed, and one such experiment is numerically performed. These results give strong support to the thermodynamic interpretation of Teff and make it experimentally accessible in a very direct way.Comment: Version accepted for publication - Physical Review Letter

    Shear-Induced Stress Relaxation in a Two-Dimensional Wet Foam

    Full text link
    We report on experimental measurements of the flow behavior of a wet, two-dimensional foam under conditions of slow, steady shear. The initial response of the foam is elastic. Above the yield strain, the foam begins to flow. The flow consists of irregular intervals of elastic stretch followed by sudden reductions of the stress, i.e. stress drops. We report on the distribution of the stress drops as a function of the applied shear rate. We also comment on our results in the context of various two-dimensional models of foams

    Optical Characterisation of a Camera module Developed for Ultra-low NEP TES Detector Arrays at FIR Wavelengths

    Get PDF
    Here we report on the optical design and on the spectral-spatial characterisation of a small 16 pixel camera. The prototype uses TES detectors with NEPs ~10-16 W/Hz0.5 which have been fabricated with near identical optical coupling structures to mimic their much lower NEP counterparts (~10-19 W/Hz0.5). This modification, which is achieved through changing only the pixel thermal conductance, G, has allowed us to perform spectral/spatial cryogenic testing using a 100mK ADR to view room temperature thermal sources. The measurements show a flat spectral response across the waveband and minimal side lobe structure in the antenna patterns down to 30dB
    • …
    corecore